

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Yota 0.1 documentation

Yota: Flexible forms with asynchronous validation

Yota is a Python form generation library with the following unique features:

	Easy integration of realtime validation. Trigger a server side form
validation with any JavaScript event on your input fields. (Client side in
planning)

	Dynamic form structures allow for complex forms with on the fly changes.
Inject different input fields or validation methods into a specific instance
of your Form where needed.

	Default themed with Bootstrap, allowing you to quickly throw together useful
forms that look nice.

In addition to these features, Yota also includes most of the features that
you would see with other form libraries.

	Simple declarative syntax for defining form validation and layout

	Customizable template driven schemas

	Ability to operate with almost any framework and use any rendering engine.
(Default is jinja2)

Philosophically Yota aims to have a ton of flexibility, since designing
powerful webforms is infrequently a cookie cutter operation. This was the main
problem the designers had with other libraries is that they ended up getting in
the way if they wanted to do anything abnormal. At the same time however it is
important that sensible default be easy to use and implement, making the
creation of common forms trivial and lowering the inital learning curve.

Overall Architecture

Yota allows you to create Forms quickly by declaring a class that is made up of
Nodes and Checks. Nodes drive the rendering of your form while Checks drive
validation of user input. Yotas power is derived from its integration of server
side and client side components, and a growing set of quality default Nodes and
Validators.

Form

The primary method of interaction with Yota, the Form class acts as a
structure to contain all of the information about your Forms structure and
configuration. Forms are usually just a collection of Nodes and Checks with
some configuration data. Most method calls will be made on Form objects.

Nodes

Nodes are the actual bits that make up your forms output. Nodes link
together rendering templates and neccessary context information. Nodes are very
abstract, and could be used to render anything, although most render form
elements. The Forms attempts to make a minimum of assumptions about the Nodes
attributes.

Validators and Checks

Checks form the bridge between your Nodes and your validators. Validators
are supplied with the names of Nodes that are used in the actual Validation
callable. At validation time these names are resolved to the actual Node
reference.

Renderers

Renderers provide a pluggable interface through which you can render your
form. This allows interchange of different templating engines, etc.

Contents

	Using Forms
	A Simple Form

	Validation Intro

	Dynamic Forms

	Form API

	Nodes
	A Simple Node
	Identifiers

	Data

	Errors

	Other

	Custom Nodes
	Changing data resolution

	Modifying AJAX rendering

	set_identifiers

	Builtin Nodes

	Node API

	Validators and Checks
	Using Validators In Your Form

	Validator Execution

	Making Custom Validators

	Return Semantics

	Special Key Values

	Builtin Validators

	Check API

	Renderers
	Custom Templates

	Switching Template Sets

	Rendering Engines
	Renderer Interface

	Switching Renderers

	JinjaRenderer API

	AJAX Validation
	Success Actions
	Redirection

	Google Analytics Logging

	Clear Form Elements

	Custom Action

	On-Submit Validation

	Piecewise Validation
	Validation Tiggers

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Isaac Cook.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Yota 0.1 documentation

Using Forms

A Simple Form

This is the core of Yota’s functionality. To create a Form with Yota you must
inherit from the From superclass like in the following example.

from yota import Form
from yota.nodes import *

class PersonalForm(Form):

 first = EntryNode()
 last = EntryNode()
 address = EntryNode()
 submit = SubmitNode(title="Submit")

Forms are simply a collection of Nodes and Checks. The Checks drive validation of the Form and will be talked about next, while the Nodes drive rendering. Conceptually Nodes can be thought of as a single input section in your form, but it can actually be anything that is destined to generate some HTML or Javascript in your Form. For example you may wish to place a header at the beginning to the Form even though it isn’t used for any data entry. Most keyword arguments passed to a Node are passed directly to their rendering context, and thus their use is completely up to user choice. More information on Nodes can be found in the Nodes documentation section. Your new Form class inherits lots of functionality for common tasks such as rendering and validation.

To render our Form we can call the Form.render() function on an instance of our Form object:

>>> personal = PersonalForm()
>>> personal.render()
'<form method="post">
...
</form>'

As talked about in the Node documentation, each Node by default has an
associated template that is used to render it. The render function essentially
passes the list of Nodes in the Form onto the Renderer. Most renderers will
render each each Node’s template and append them all together. In addition to
the Nodes that you have defined in your subclass, a Node for the beginning and
end of your Form will automatically be injected. The is a convenience that can
be disabled by setting the Form.auto_start_close to False. We
can see this functionality in action in the below example:

>>> form = PersonalForm()
>>> for node in form._node_list:
... print node._attr_name
...
start
first
last
address
submit
close

Even though ‘first’ was our first element in the Form and ‘submit’ was our last,
the Nodes ‘start’ and ‘close’ have been prepended and appended respectively. By
default these Nodes load from templates ‘form_open.html’ and ‘form_close.html’,
however these values can be easily overridden, as can the entire start and
close Nodes. For more information see the Form.auto_start_close,
Form.start_template, Form.close_template. Passing in a ‘start’
or ‘close’ attribute, either through keywords or subclass attributes, will
override the default generated Nodes, but it will still place them at the
beginning and end.

Validation Intro

To add some validation to our Form we need to create a Check. Checks are just containers for Validators and hold information about how the Validator should be executed. The below code will add a Check for the ‘first’ Node to ensure a minimum length of 5 characters.

from yota import Form
from yota.nodes import *
from yota.validation import

class PersonalForm(Form):

 first = EntryNode()
 _first_valid = Check(MinLengthValidator(5), 'first')
 last = EntryNode()
 address = EntryNode()
 submit = SubmitNode(title="Submit")

The constructor prototype may help provide some reference for the explaination:

When you define a Check object you are essentially specifying a Validator that needs to be run when the Form data is validated, and the information that needs to be passed to said Validator. Attr_args and attr_kwargs should be strings that define what data will get passed into the Validator at validation time. For instance in the above example that data that was entered for the ‘first’ Node will get passed to the validator. More information on Checks and Validators can be found on the Validators and Checks page.

Dynamic Forms

One of the key features of Yota is the ability to make changes to the Form
schema at runtime with little effort. For example, say you wanted to make a Form
that allowed the user to enter a list of names, and the form included a button
that added another field with JavaScript. Or perhaps you would like to create a
Form that is slightly different depending on session data. With a dynamic Form schema managing
these situations can be much easier.

Since the Form object that is used to run validation after a submission needs to
match the Form object that was used to originally render the Form there are some
considerations that need to be made. There are of course many ways to try and
solve this synchronization problem, but here is a straightforward solution that
should apply to most situations.

This section currently needs expansion, however a thoroughly commented example
can be found in the yota_examples github repository.

Form API

	
class yota.Form(**kwargs)[source]

	This is the base class that all user defined forms should inherit from,
and as such it is the main way to access functionality in Yota. It
provides the core functionality involved with setting up and
rendering the form.

	Parameters:	
	context – This is a context specifically for the special form open
and form close nodes, canonically called start and close.

	g_context – This is a global context that will be passed to all nodes
in rendering thorugh their rendering context as ‘g’ variable.

	start_template – The template used when automatically
injecting a start Node. See yota.Form.auto_start_close for
more information.

	close_template – The template used when automatically
injecting a close Node. See yota.Form.auto_start_close for
more information.

	auto_start_close – Dictates whether or not start and close
Nodes will be automatically appended/prepended to your form. Note
that this must be set via __init__ or your class definition since it
must be set before __init__ for the Form is run.

	hidden – A dictionary of hidden key/value pairs to be injected
into the form. This is frequently used to pass dynamic form
parameters into the validator.

	
_event_lists = {}

	

	
_gen_validate(data, piecewise=False)[source]

	This is an internal utility function that does the grunt work of
running validation logic for a Form. It is called by the other
primary validation methods.

	
_node_list = []

	

	
_parse_shorthand_validator(node)[source]

	Loops thorugh all the Nodes and checks for shorthand validators.
After inserting their checks into the form obj they are removed from
the node. This is because a validation may be called multiple times on
a single form instance.

	
_process_errors()[source]

	

	
_processor

	This is a class that performs post processing on whatever is passed in
as data during validation. The intended purpose of this was to write
processors that translated submitted form data from the format of the web
framework being used to a format that Yota expects. It also allows things
like filtering stripping characters or encoding all data that enters a
validator.

alias of FlaskPostProcessor

	
_renderer

	This is a class object that is used to perform the actual rendering
steps, allowing different rendering engines to be swapped out. More about
this in the section Renderer

alias of JinjaRenderer

	
_reserved_attr_names = ('context', 'hidden', 'g_context', 'start_template', 'close_template', 'auto_start_close', '_renderer', '_processor', 'name')

	

	
_setup_node(node)[source]

	An internal function performs some safety checks, sets attribute,
and set_identifiers

	
_validation_list = []

	

	
add_listener(listener, type)[source]

	Attaches a Listener to an event type. These Listener will
be executed when trigger event is called.

	
auto_start_close = True

	

	
close_template = 'form_close'

	

	
context = {}

	

	
data_by_attr()[source]

	Returns a dictionary of currently stored Node.data
attributes keyed by Node._attr_name. Used for returning data
after its been processed by validators.

	
data_by_name()[source]

	Returns a dictionary of currently stored Node.data
attributes keyed by Node.name. Used for returning data
after its been processed by validators.

	
error_header_generate(errors, block)[source]

	This function, along with success_header_generate allow you to give
form wide information back to the user for both AJAJ validated forms
and conventionally validated forms, although the mechanisms are
slightly different. Both functions are run at the end of a successful
or failed validation call in order to give more information for
rendering.

For passing information to AJAJ rendering, simply return a dictionary,
or any Python object that can be serialized to JSON. This information
gets passed back to the JavaScript callbacks of yota_activate, however
each in slightly different ways. success_header_generate’s information
will get passed to the render_success callback, while
error_header_generate will get sent as an error to the render_error
callback under the context start.

For passing information into a regular, non AJAJ context simply access
the attribute manually similar to below.

self.start.add_error(
 {'message': 'Please resolve the errors below to continue.'})

This will provide a simple error message to your start Node. In
practice these functions could also be used to trigger events and other
interesting things, although that was not their intended function.

	Parameters:	
	errors – This will be a list of all other Nodes that have errors.

	block (boolean) – Whether or not the form submission will be blocked.

	
g_context = {}

	

	
get_by_attr(name)[source]

	Safe accessor for looking up a node by Node._attr_name

	
insert(position, new_node_list)[source]

	Inserts a Node object or a list of objects at the
specified position into the Form._node_list of the form.
Index -1 is an alias for the end of the list. After insertion
the Node.set_identifiers() will be called to generate
identification for the Node. For this to function,
Form._attr_name must be specified for the node prior to
insertion.

	
insert_after(prev_attr_name, new_node_list)[source]

	Runs through the internal node structure attempting to find
a Node object whos Node._attr_name is
prev_attr_name and inserts the passed node after it. If
prev_attr_name cannot be matched it will be inserted at the
end. Internally calls Form.insert() and has the same
requirements of the Node.

	Parameters:	
	prev_attr_name (string) – The attribute name of the Node that you
would like to insert after.

	new_node_list (Node or list of Nodes) – The Node or list of Nodes to be
inserted.

	
insert_validator(new_validators)[source]

	Inserts a validator to the validator list.

	Parameters:	validator (Check) – The Check to be inserted.

	
json_validate(data, piecewise=False, raw=False)[source]

	The same as Form.validate_render() except the errors
are loaded into a JSON string to be passed back as a query
result. This output is designed to be used by the Yota
Javascript library.

	Parameters:	
	piecewise (boolean) – If set to True, the validator will silently
ignore validator for which it has insufficient information. This
is designed to be used for the AJAJ piecewise validation
function, although it does not have to be.

	raw (boolean) – If set to True then the second return parameter will be a
Python dictionary instead of a JSON string

	Returns:	A boolean whether or not the form submission is valid and the
json string (or raw dictionary) to pass back to the javascript side.
The boolean is an anding of submission (whether the submit button was
actually pressed) and the block parameter (whether or not any blocking
validators passed)

	
name = None

	

	
render()[source]

	Runs the renderer to parse templates of nodes and generate the form
HTML.

	Returns:	A string containing the generated output.

	
render_error = False

	

	
render_success = False

	

	
start_template = 'form_open'

	

	
success_header_generate()[source]

	Please see the documentation for Form.error_header_generate()
as it covers this function as well as itself.

	
title = None

	

	
trigger_event(type)[source]

	Runs all the associated Listener‘s for a specific event
type.

	
type_class_map = {'info': 'alert alert-info', 'warn': 'alert alert-warn', 'success': 'alert alert-success', 'error': 'alert alert-error'}

	A mapping of error types to their respective class values. Used to
render messages to the user from validation. Changing it to render messages
differently could be performed as follows:

class MyForm(yota.Form):
 first = EntryNode(title='First name', validators=Check(MinLengthValidator(5)))
 last = EntryNode(title='Last name', validators=MinLengthValidator(5)

 # Override the default type_class_map with our own
 type_class_map = {'error': 'alert alert-error my-special-class', # Add an additional class
 'info': 'alert alert-info',
 'success': 'alert alert-success',
 'warn': 'alert alert-warn'}

	
update_success(update_dict, raw=False)[source]

	This method serves as an easy way to update your success attributes
that are passed to the start Node rendering context, or passed back in
JSON. It automatically recalls whether the last validation call was to
json_validate or validate_render and modifys the correct dictionary
accordingly.

	Parameters:	
	update_dict – The dictionary of values to update/add.

	raw (bool) – Whether you would like a pre-compiled JSON
string returned, or the raw dictionary.

	Returns:	Return value is either the new JSON string (or raw dict if
requested) if json_validate was your last validation call, or a
re-render of the form with updated error messages if validate_render
was your last call.

	
validate(data)[source]

	Runs all the validators associated with the Form.

	Returns:	Whether the validators are blocking submission and a list of
nodes that have validation messages.

	
validate_render(data)[source]

	Runs all the validators on the data that is passed in and returns
a re-render of the Form if there are validation errors,
otherwise it returns True representing a successful submission. Since
validators are designed to pass error information in through the
Node.errors attribute then this error information is in turn
availible through the rendering context.

	Parameters:	data (dictionary) – The data to be passed through the
Form._processor. If the data is in the form of a dictionary
where the key is the ‘name’ of the form field and the data is a
string then no post-processing is neccessary.

	Returns:	Whether the validators are blocking submission and a re-render
of the form with the validation data passed in.

	
validator()[source]

	This is provided as a convenience method for Validation logic that
is one-off, and only intended for a single form. Simply override this
function and access any of your Nodes and their data via the self. This
method will be called after all other Validators are run.

 Copyright 2013, Isaac Cook.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Yota 0.1 documentation

Nodes

Nodes drive the actual rendering of your Form. Internally a
Form keeps track of a list of Node‘s and then passes them off
to the Renderer when a render of the Form is requested. Lets
look at a simple example Form as shown in the introduction:

from yota import Form
from yota.nodes import *

class PersonalForm(Form):

 first = EntryNode()
 last = EntryNode()
 address = EntryNode()
 submit = SubmitNode(title="Submit")

All of the attributes defined in the above class are Node instances.
Internally there is some trickery that preservers the order of these
attributes, but this is not important to understand for using them. Just
realize that unlike a regular object in Python, the order of these attributes
effects the output of your Form.

Note

Some attribute names are reserved and trying to overwrite them with
Node attributes will break things. Ensure that the names you select for your
Node attributes do not collide with parameters to Form or keyword
attributes that you pass to your Form.

The canonical Node is just a reference to some kind of rendering template (by
default, Jinaj2 templates) and some associated metadata that will control how the
template is rendered.

A Simple Node

Let’s examine one of the builtin Nodes availible in Yota, and some of the
things we can do with it. Let us look at the nodes.EntryNode. It has the
following template:

{% extends base %}
{% block control %}
<input data-piecewise="{{ piecewise_trigger }}"
 type="text"
 id="{{ id }}"
 value="{{ data }}"
 name="{{ name }}"
 placeholder="{{ placeholder }}">
{% endblock %}

Above we see what looks vaugly like HTML. If you’re not familiar with Jinja it
would be a good idea to give their documentation a cursory glance before
proceeding much further. However, the jist is that the sections enclosed in
double curly-braces {{ }} will be replaced with variables, while the {% %} enclosed
areas represent some sort of control structure. The meat of the above template
is the input field. You can see that most of its attributes are replaced by
variables.

Now take a look at the extends portion on the first line of our template. This
is actually importing another template which is used as the base for many
different builtin Nodes in Yota. We can see that template here:

<div class="control-group">
 {% block error %}
 {% if errors %}
 <div class="alert alert-error">
 {{ errors[0]['message'] }}
 </div>
 {% endif %}
 {% endblock %}
 {% if label %}
 {% block label %}
 <label class="control-label" for="{{ name }}">{{ title }}</label>
 {% endblock %}
 {% endif %}
 <div class="controls">
 {% block control %}
 {% endblock %}
 </div>
</div>

This template is just the default horizontal form layout for Bootstrap. Up top
you can see a section reserved for displaying errors and in the middle a
section to display a label. At the bottom is where the other template gets
injected through the magic of blocks. Again, refer to the Jinja2 documentation
for more information on this.

The actual Node definition is basically nothing:

class EntryNode(BaseNode):
 template = 'entry'

Notice that the template is just entry, not entry.html. This is because the
renderer auto-appends the suffix so Nodes can be used across different
templating engines.

To understand more of what’s going on under the covers, here’s some
explaination about how the variables used in the above templates are generated.

Identifiers

Some of the values, such as id and name will get automatically generated by
Node.set_identifiers(), and will be based off of what you name the
attribute in you class definition.

Data

The data attribute is automatically populated when validation is run. This is
performed by Node.resolve_data() and talked about in the Custom Node
section below.

Errors

This attriubte is a list of errors generated by validator callables. More about
this in validation.

Other

The remained of variables in the above template are just plain old attributes
with defaults. Keep in mind that attriubtes/arguments in Yota do not behave
quite like they do normally in Python. Learn more about this in Attribute and
Argument behaviour in the Form page.

The majority of Node attributes may be overridden either through initialization
of the function, like so:

my_node = EntryNode(name="Something else", template="custom_entry")

Or by setting it as a class attribute in your Node definition like so:

class EntryNode(BaseNode):
 template = 'entry'
 _ignores = ['template']

However, keep in mind that attributes that are auto-generated, such as name,
id, and title should not be set as class attributes since they will get
overriden when they are generated. By default, the following attributes are
reserved:

	name

	id

	title

	errors

	data

	_attr_name

	_ignores

	_requires

	_create_counter

Custom Nodes

Most Node definitions are quite simple, with the majority simply changing the
template being used. More complex Node semantics are availible by overriding
some of their built in methods, such as Node.resolve_data() or
Node.set_identifiers(). These are all described in the API documentation,
but some examples will be given here of how you might wish to use these
methods.

Changing data resolution

The default Node implementation assumes that your Node only contains one input,
and as such its data output is assumed to be tied directly to this single input.
The Node.set_identifiers() method defines a defualt implementation for
naming your input field that looks something like this:

try:
 self.data = data[self.name]
except KeyError:
 self.data = self._null_val

You can see above that the Node’s name is used to pick out the data that is
associated with this Node. But say your Node includes multiple input fields,
perhaps you have a date picker. A simple template may look like this:

Month: <input type="text" name="{ name }_month" placeholder="Month" />

Day: <input type="text" name="{ name }_day" placeholder="Day" />

Year: <input type="text" name="{ name }_year" placeholder="Year" />

Now of course the Node.resolve_data() will fail to find anything associated
with “name” since it doesn’t exist, and instead an implementation may look
something like this.

def resolve_data(self, data):
 try:
 day = data[self.name + '_day']
 month = data[self.name + '_month']
 year = data[self.name + '_year']
 except KeyError:
 self.data = self._null_val

 # set data to a tuple of values for validation
 self.data = (year, month, day)

Aside from our crappy looking form, and some lack of bounds checking everything
is good. Now say we wanted to make this form work with AJAX, and we wanted to
make the border of each of the form elements red when there was an error. Well
this is a problem, because our JavaScript doesn’t implicity know how to find
the elements. You could modify your render_error method to manually catch this
case, but this wouldn’t be a very resiliant option. Instead, we can make our
default functions aware of these extra elements. This is done through the
json_identifiers method.

Modifying AJAX rendering

Node.json_identifiers() is executed by validation methods when sending erros back to
the client side via JSON. It is used to give the client side inoformation about
where the error data should be placed in the DOM. Essentially your render_error
and render_success methods are passed an ‘ids’ object, and this is a direct
serialization of the return from this function. The default render_error and
render_success methods expect the following keys:

	‘error_id’: This should be an id value of a DOM element that you would like to
place your error ‘message’ in. This is not actually used by default, but is
implemented by all builtin Nodes. It corresponds to the DOM element that
renders regular errors.

	‘elements’: This supplies a list of all ids of form elements in the Node.
Error tooltips point to the first element.

set_identifiers

When the Node is added to a Form the set_identifiers method is called to setup
some unique names to be used in the template and possibly AJAX. Perhaps you’d
like a different semantic for automatically titling your date pickers?
Overriding this function may also be wanted if you’re writing a Node with
multiple form elements in it. This all depends on your preference.

def set_identifiers(self, parent_name):
 super(MySuperSpecialNode, self).set_identifiers(parent_name)
 if not hasattr(self, 'title'):
 self.title = self._attr_name.capitalize() + " Very Special"

Builtin Nodes

	
class yota.nodes.BaseNode(**kwargs)[source]

	This base Node supplies the name of the base rendering template that
is used for standard form elements. This base template provides error divs
and the horizontal form layout for Bootstrap by default through the
horiz.html base template.

	
class yota.nodes.NonDataNode(**kwargs)[source]

	A base to inherit from for Nodes that aren’t designed to generate
output, such as the SubmitNode or the LeaderNode. It must override
resolve_data, otherwise the data will be set to Node._null_val.

	
class yota.nodes.ListNode(**kwargs)[source]

	
	Node for providing a basic drop down list. Requires an attribute that

	is a list of tuples providing the key and value for the dropdown list
items.

Note

The first item of the tuple must be a string in order to match
returned data properly and re-select the same list item when a
validation error occurs.

	Attr items:	Must be a list of tuples where the first element is the value
of the second is the label.

	
class yota.nodes.RadioNode(**kwargs)[source]

	Node for providing a group of radio buttons. Requires buttons
attribute.

	Attr buttons:	Must be a list of tuples where the first element is the
value of the second is the label.

	
class yota.nodes.CheckGroupNode(**kwargs)[source]

	Node for providing a group of checkboxes. Requires boxes
attribute. Instead of defining an ID value explicitly the
Node.set_identifiers defines a prefix value to be prefixed to all
id elements for checkboxes in the group. The output data is a list
containing the names of the checkboxes that were checked.

	Attr boxes:	Must be a list of tuples where the first element is the
name, the second is the label.

	
class yota.nodes.ButtonNode(**kwargs)[source]

	Creates a button in your form that submits
no data.

	
class yota.nodes.EntryNode(**kwargs)[source]

	Creates an input box for your form.

	
class yota.nodes.PasswordNode(**kwargs)[source]

	Creates an input box for your form.

	
class yota.nodes.FileNode(**kwargs)[source]

	Creates an input box for your form.

	
class yota.nodes.TextareaNode(**kwargs)[source]

	A node with a basic textarea template with defaults provided.

	Attr rows:	The number of rows to make the textarea

	Attr columns:	The number of columns to make the textarea

	
class yota.nodes.SubmitNode(**kwargs)[source]

	Displays a submit button on the right side to align with Form elements

	
class yota.nodes.LeaderNode(**kwargs)[source]

	A Node that does few special things to setup and close the form.
Intended for use in the start and end Nodes.

Node API

	
class yota.Node(**kwargs)

	Nodes are holders of context for rendering and displaying validating
for a portion of your Form. This default base Node is designed to
provide a template along with specific context information to a templating
engine such as Jinja2. For validation a Node acts as an information source
or an error sink. Essentially Nodes can be used to source data for use in a
Check, and they can then be delivered some sort of validation
error via a the internal errors attribute.

Note

By default all keyword attributes passed to a Node’s init
function are passed onto the rendering context. To override this,
use the
Node._ignores attribute.

	Parameters:	
	_attr_name (string) – This is how the Node is identified in the Form. If
populated automatically if the Node is defined in an a Form class
definition, however if the Node is added dynamically it will need to be
defined before adding it to the Form.

	_ignores (list) – A List of attribute names to explicity not include in the
rendering context. Mostly a niceity for keeping the rendering context
clutter free.

	_requires (list) – A List of attributes that will be required at
render time. An exception will be thrown if these attributes are not
present. Useful for things like lists that require certain data to
render properly.

	template (string) – String name of the template to be parsed upon
rendering. This is passed into the Form._renderer so it needs to
be whatever that is designed to accept. Jinja2 is looking for a
filename like ‘node’ that occurs in it’s search path.

	validators – An optional attribute that specifies a Check
object, or list of Check objects to be associated with the Node. This is
automatically at render time.

	_null_val – When form submission data is passed in for validation and
the Node.resolve_data() method cannot identify anything, the data
attribute will be set to this value. Defaults to “”.

The default Node init method accepts any keyword arguments and adds them to
the Node’s rendering context. In addition any class attributes may be added
to custom Nodes and these attributes will be copied at instantiation time
and passed into the rendering context.

	
_attr_name = None

	

	
_create_counter = 0

	Allows tracking the order of Node creation

	
_ignores = ['template', 'validator']

	

	
_null_val = ''

	

	
_requires = []

	

	
add_error(error)

	This method serves mostly as a wrapper alowing for different error
ordering semantics, or possibly error post-processing. Errors from
validation methods should be added in this way allowing them to be
caught. More information about what gets passed in in the
Validators and Checks section.

	
data = ''

	

	
errors = []

	

	
get_context(g_context)

	Builds our rendering context for the Node at render time. By
default all attributes of the Node are added to the global namespace
and the global rendering context is passed in under the variable ‘g’.
This function is designed to be overridden for customization. :param
g_context: The global rendering context passed in from the rendering
method.

	Parameters:	g_context – This is the global context passed in from the parent
Form object. By default it’s included under the ‘g’ key, similar to
Flask’s globals.

	
get_list_names()

	As the title suggests this needs to return an iterable of names. These
should be names corresponding to form elements that the Node will
generate. This list is uesed by piecewise validation to determine if a
Node has been visisted based on a list of names that have been visited,
bridging Nodes to elements.

	
json_identifiers()

	Allows passing arbitrary identification information to your JSON
error rendering callback. For instance, a common use case is the display
an error message in a pre-defined div with a specific id. Well you may
perhaps pass in an ‘error_div_id’ attribute to the JSON callback to use
when trying to render this error. The default for Yota builtin nodes is
to pass ‘error_id’ indicating the id of the error container in addition
to a list containing all input elements in the Node’s ids.

	
label = True

	

	
piecewise_trigger = 'blur'

	

	
resolve_data(data)

	This method links data from form submission back to Nodes. HTML
form data is represented by a dictionary that is keyed by the ‘name’
attribute of the form element. Since most Nodes only render a single
form element, and the default set_identifiers generates a single ‘name’
attribute for the Node then this function attempts to find data by
linking the two together. However, if you were to change that semantic
this would need to change. Look at the CheckGroupNode for a reference
impplementation of this behaviour, or the Docs under “Custom Nodes”.
This method should operate by setting its own data attribute, as this
is how Validators conventionally look for data.

	... note:: This method will throw an exception at validation time if

	the data dictionary contains no key name, so it important to
override this function to a NoOp if your Node generates no data.
NonDataNode was created for this exact purpose.

	Parameters:	data – The dictionary of data that is passed to your validation
method call.

	
set_identifiers(parent_name)

	This function gets called by the parent Form when it is
initialized or inserted. It is designed to set various unique
identifiers. By default it generates an id for the Node that is
{parent_name}_{_attr_id}, a title for the Node that is the _attr_name
capitalized, and a name for the element that is just the _attr_name.
All of these attributes are then passed onto the rendering context of
the Node by default. By default all of these attributes will yield to
attributes passed into the __init__ method.

	Parameters:	parent_name (string) – The name of the parent form. Useful in ensuring
unique identifiers on your element names.

	
template = None

	

	
validators = []

	

 Copyright 2013, Isaac Cook.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Yota 0.1 documentation

Validators and Checks

Validators allow you to provide users feedback on their input through
structured, reusable callables. Validators can be supplied an arbitrary number of
inputs as well as dispatch information (errors, warnings, etc) to an arbitrary
number of output Nodes.

Using Validators In Your Form

Validators are generally added into your Form schema in a way similar to adding
Nodes; that is, by declaring attributes in your Form definition. There is a
long syntax that is more explicit as well as a shorthand that can add
convenience for simple validators. The explicit declaration can be seen below
through the definition of a Check.

class MyForm(yota.Form):
 # This syntax shortens up the above explicit syntax for simple
 # validators
 first = EntryNode(title='First name')
 _first_valid = Check(MinLengthValidator(5), 'first')

The syntax above defines a single yota.nodes.EntryNode and an associated validator that
ensures the entered value is at least 5 characters long. This is done through
the declaration of a yota.Check object. The Check accepts the actual
validator as its first argument, followed by the names of Nodes that you will
be validating. The above example binds our yota.validators.MinLengthValidator to a Node with
the attribute name ‘first’. Later when we try to validate the Form the string
‘first’ will be used to lookup our Node and supply the appropriate information
to the validator method. Nodes in Yota are identified by their attribute name
as given in the class declaration. However, If you later add a Node
dynamically it will need to specify the _attr_name attribute upon declaration
explicitly. More on this in Dynamic Forms.

The above syntax gives us some nice power. We can supply that validation method
with as many Nodes as we would like in a clear way. But what if we want to
write a bunch of validators that only validate a single Node? Then the above is
quite verbose, and below shows an implicit declaration that is a nice option
for simple validators, and is just syntactic sugar for the above syntax.

class MyForm(yota.Form):
 # This syntax shortens up the above explicit syntax for simple
 # validators. An arg of 'first' will automatically be added to the
 # Check object for you.
 first = EntryNode(title='First name',
 validators=Check(MinLengthValidator(5)))

 # This even more brief syntax will automatically build the Check
 # object for you since it's just boilerplate at this point
 last = EntryNode(title='Last name', validator=MinLengthValidator(5)

 # This syntax however is just like above. Be aware that your
 # attribute name will not be automatically added since your
 # explicitly defining args
 address = EntryNode(validators=
 Check(MinLengthValidator(9), 'address'))

 # In addition, you can specify a list of validators, or a tuple
 addr = EntryNode(title='Address', validators=[MinLengthValidator(5),
 MaxLengthValidator(25)])

Note

If neither kwargs or args are specified and cannot be implicitly determined
an exception will be thrown.

Validator Execution

With the regular form validation method Form.validate_render() the error
values after validation are maintained in errors and passed into the rendering
context. In your Node template, the error can then be used for
anything related to rendering and will contain exactly what was returned by
your validator.

With either the piecewise JSON validation method or the regular JSON validation
method the data will get translated into JSON. This JSON string is designed to
be passed back via an AJAX request and fed into Yota’s JacaScript jQuery plugin,
although it could be used in other ways. Details about this functionality are in
the AJAX documentation section.

To continue our example series above, we may now try and execute a validation
action on our Form. For this example we will use a Flask view, although the
concepts should be fairly obvious and transfer to most frameworks easily.

class MyForm(yota.Form):
 # Our same form definition as above but stripped of the now un-needed
 # comments
 first = EntryNode(title='First name',
 validators=Check(MinLengthValidator(5)))
 last = EntryNode(title='Last name', validators=MinLengthValidator(5)
 address = EntryNode(validators=
 Check(MinLengthValidator(9), 'address'))

In Flask routes are declared with annotations. Basically mapping a URL to
this method
@app.route("/ourform", methods=['GET', 'POST'])
def basic():
 # Create an instance of our Form class
 form = MyForm()

 # When the form is submitted to this URL (by default forms submit to
 # themselves)
 if request.method == 'POST':
 # Run our convenience method designed for regular forms
 # 'success' if validation passed, 'out' is the re-rendering of the form
 success, out = form.validate_render(request.form)

 # if validation passed, we should be doing something
 if success:
 # Load up our validated data
 data = form.get_by_attribute()

 # Create a pretend SQLAlchemy object. Basically, we want to try
 # and save the data somehow...
 res = User(first=data['first'],
 last=data['last'],
 address=data['address'])

 # Attempt to save our changes
 try:
 DBSession.add(new_user)
 DBSession.commit()
 except (sqlalchemy.exc, sqlalchemy.orm.exc) as e:
 # An error with our query has occurred, change the message
 # and update our rendered output
 out = form.update_success(
 {'message': ('An error with our database occurred!')})
 else:
 # By default we just render an empty form
 out = form.render()

 def success_header_generate(self):
 return {'message': 'Thanks for your submission!'}

 return render_template('basic.html',
 form=out)

Making Custom Validators

A validator should be a Python callable. The callable will be accessed through
a Check object that provides context on how you would like your
validator to be executed in this given instance. Checks are what provide your
validation callable with the data it is going to validate. Essentially they are
context resolvers, which is part of what allows Yota to be so dynamic.

When the validation callable is run it is supplied with a reference to a
Node. The submitted data that is associated with that Node
will be loaded into the data attribute automatically. At this point, perhaps an
example will help clarify.

import yota

def MyValidator(node_in):
 if len(node_in.data) > 5:
 node_in.add_error({'message': "You're text is too long!"})

class MyForm(yota.Form):
 test_node = yota.nodes.EntryNode()
 _test_check = yota.validators.Check(MyValidator, 'test_node')

In the above exmaple we made a simple validator that throws an error if your
input value is longer than 5 characters. You can see the creation of the Check
instance in the Form declaration supplies the string ‘test_node’. This is indicating
the name of the Node that you would like to supply to the Validator as
input.

Note

In Yota, all Nodes are uniquely identified by an attribute
_attr_name. This gets automatically set to the value of the attribute you
assigned the Node to in your Form declaration.

Later when the validator is to be called the string is replaced by a refernce
to a Node with the specified Node._attr_name. The method
behind this maddness is that it allows for dynamically adding Nodes at and up
until vaildation time, as well as dynamic injection of validation rules
themselves. In addition your validation methods can now request as much data
as you’d like, and subsequently can disperse errors to any Nodes they are
supplied with.

Return Semantics

Validators need not return anything explicitly, but instead provide output by
appending error information to one of their supplied Node’s errors list
attribute via the method Node.add_error(). This method is simply a
wrapper around appending to a list so that different ordering or filtering
semantics may be used if desired. The data can be put into this list is fairly
flexible, although a dictionary is recommended. If you are running a JSON based
validation method the data must by serializable, otherwise it may be anything
since it is merely passed into the rendering context of your templates.

That said, the builtin templtes are setup to recieve specific things. The
default templates are setup to look two keys: a dictionary with a single key
‘message’ which will be printed, and ‘type’ to denote the alert style. If a
type is ommitted then type will default to an error for rendering purposes.
Looking at a builtin validator should provide additional clarity.

class IntegerValidator(object):
 """ Checks if the value is an integer and converts it to one if it is

 :param message: (optional) The message to present to the user upon failure.
 :type message: string
 """
 # A minor optimization that is borderline silly
 __slots__ = ["message"]

 def __init__(self, message=None):
 self.message = message if message else "Value must only contain numbers"
 super(IntegerValidator, self).__init__()

 def __call__(self, target):
 # This provides a conversion as well as a validation
 try:
 target.data = int(target.data)
 except ValueError:
 # Type can be safely ommitted because this is an error
 target.add_error({'message': self.message})

For rendering errors you may notice the _type_class key being looked for in the
error.html template. This is generated internally from what you enter as ‘type’
in your return dictionary. This is resolved by the Form.type_class_map,
which maps types in the key to classes to be applied in the value. An example
usage might be that you’d like to add your own class to the error display.

Note

If you wish to make use of Special Key Values you will be required to use dictionaries to return errors.

Special Key Values

Block

If set to False the validation message will not prevent the form from
submitting. As might be expected, a single blocking validator will cause
the block flag to return true. This is useful for things like notification
of password strength, etc. Errors returned are assumed to be blocking unless
specified otherwise.

Builtin Validators

The default pattern for builtin Validators in Yota is to return a dictionary
with a key ‘message’ containing the error. This is also the pattern that the
builtin Node‘s except when rendering errors, and therefore is the
recommended format when building your own validators.

	
class yota.validators.MinLengthValidator(length, message=None)[source]

	Checks to see if data is at least length long.

	Parameters:	
	length (integer) – The minimum length of the data.

	message (string) – The message to present to the user upon failure.

	
class yota.validators.MaxLengthValidator(length, message=None)[source]

	Checks to see if data is at most length long.

	Parameters:	
	length (integer) – The maximum length of the data.

	message (string) – The message to present to the user upon failure.

	
class yota.validators.MinMaxValidator(min, max, minmsg=None, maxmsg=None)[source]

	Checks if the value is between the min and max values given

	Parameters:	
	message (string) – (optional) The message to present to the user upon failure.

	min – The minimum length of the data.

	max – The maximum length of the data.

	
class yota.validators.RequiredValidator(message=None)[source]

	Checks to make sure the user entered something.

	Parameters:	message (string) – (optional) The message to present to the user upon failure.

	
class yota.validators.RegexValidator(regex=None, message=None)[source]

	Quick and easy check to see if the input
matches the given regex.

	Parameters:	
	regex (string) – (optional) The regex to run against the input.

	message (string) – (optional) The message to present to the user upon failure.

	
class yota.validators.EmailValidator(message=None)[source]

	A direct port of the Django Email validator. Checks to see if an
email is valid using regular expressions.

	
class yota.validators.UsernameValidator(message=None)[source]

	Quick and easy check to see if a field
matches a stamdard username regex. This regex
matches a string from 3-20 characters long and
composed only of numbers, letters, hyphens, and
underscores.

	Parameters:	message (string) – (optional) The message to present to the user upon failure.

	
class yota.validators.PasswordStrengthValidator(regex=None, message=None)[source]

	A validator to check the password strength.

	Parameters:	
	regex (list) – (optional) The regex to run against the input.

	message (string) – (optional) The message to present to the user upon failure.

	
class yota.validators.MatchingValidator(message=None)[source]

	Checks if two nodes values match eachother. The error is delivered to
the first node.

	Parameters:	message (string) – (optional) The message to present to the user upon failure.

	
class yota.validators.IntegerValidator(message=None)[source]

	Checks if the value is an integer and converts it to one if it is

	Parameters:	message (string) – (optional) The message to present to the user upon failure.

Check API

	
class yota.Check(callable, *args, **kwargs)

	This object wraps a validator callable and is intended to be used in
your Form subclass definition.

	Parameters:	
	validator (callable) – This is required to be a callable object
that will carry out the actual validation. Many generic validators
exist, or you can roll your own.

	args (list) – A list of strings, or a single string,
representing that _attr_name of the Node you would like passed
into the validator. Once a validator is called this string will get
resolved into the Node object

	kwargs (dict) – Same as args above except it allows passing in node
information as keyword arguments to the validator callable.

Check objects are designed to be declared in your form subclass.

	
node_visited(visited)

	Used by piecewise validation to determine if all the Nodes involved
in the validator have been “visited” and thus are ready for the
validator to be run

 Copyright 2013, Isaac Cook.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Yota 0.1 documentation

Renderers

Custom Templates

Most people end up needing to design templates different from the ones built in
at some point. Because of this Yota is setup for specifying a search path for
custom templates. By default Yota will only look at its own
template directory. It is typical to add a search path that points somewhere
within your project. Yota will take the first template it finds that matches, so
a simple way to ensure your custom templates are prioritized is to insert your path
first in the list. A typical example might look something like this:

import os
from yota.renderers import JinjaRenderer

JinjaRenderer.search_path.insert(0, os.path.dirname(os.path.realpath(__file__)) +
 "/assets/yota/templates/")

Switching Template Sets

Yota provides potential for multiple default template sets. The default template
set is designed for use with Bootstrap 2.3.2, but a Bootstrap 3.0 implementation
can used by modifying the JinjaRenderer attribute templ_type to ‘bs3’. More can
be read at renderers.JinjaRenderer.templ_type.

Rendering Engines

By default Jinja2 is the renderer for Yota, however support for other renderes
is possible by setting the Form._renderer to a different class that
implements the proper interface. Currently the default and only option is
renderers.JinjaRenderer, however other implementations should be easy to write.
The default Nodes Node.template property lacks a file extension and
expects the renderer to auto-append this before calling the template, thus
allowing the Node to work accross different renderers.

Renderers are invoked when a render method of a Form is executed.
currently these include Form.render() and Form.validate_render().
renderers were designed mainly to allow the interchange of template engines and
context gathering semantics.

Renderer Interface

As of now only one method must be implemented by a Renderer: the render method.
It accepts two parameters, a list of Nodes to be rendererd in order and a
dictionary that contains the global context to include in every template context.
Looking at the source for JinjaRenderer will provide some guidence on how you
might write your own Renderer.

Switching Renderers

A standard pattern would be to set the Form class object Form._renderer
attribute allowing the attribute change to be effectively global. This would
normally be done in whatever setup function your web framework provides.

JinjaRenderer API

	
class yota.renderers.JinjaRenderer[source]

	
	
env[source]

	Simple lazy loader for the Jinja2 enviroment

	
render(nodes, g_context)[source]

	Loop over each Node passed in by nodes and render it into a big
blob of a string. Passes g_context to each nodes
Node.get_context().

	
search_path = []

	The list of paths that Jinja will look for templates in. It scans
sequentially, so inserting custom template paths at the beginning is an
easy way to override default templates without touching Yota. The default
path is appended to the end of this list the first time render is called.

	
suffix = '.html'

	The default template suffix

	
templ_type = 'bs2'

	Allows you to switch the default template set being used. Default templates
for JinjaRenderer are stored in /templates/jinja/{templ_type}/. Below code
being run before your render method will change templates to Bootstrap 3.0.
This is usually run when setting up web framework configs to take effect
globally. See the flask example for more information.

import os
from yota.renderers import JinjaRenderer

JinjaRenderer.templ_type = "bs3"

Note

In order to display errors correctly the Form.type_class_map
must be overriden so alert-error can be changed to alert-danger for
Bootstrap 3.

 Copyright 2013, Isaac Cook.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Yota 0.1 documentation

AJAX Validation

Yota provides a JavaScript architecture in addition to specializatied
validation methods to enable easy construction of AJAX based Form validation.
Yota supports two main modes of AJAX based validation: piecewise and on-submit.
Piecewise validation attempts to validate a portion of the Form (only the
portions that the user has visited) on some kind of trigger event, such as the
user moving to the next form element, or keydown on a specific element.
On-submit is just what it sounds like: when the form is submitted an
asynchronous server call is made and the validation results are rendererd or a
success action is executed. These features allow you to give your user faster
feedback on what mistakes they made to ease the form filling process.

Note

The AJAX validator examples below rely on using the id attribute
for a Node. This value is set by the default in Node.set_identifiers().

Server side implementation for AJAX validation is designed to be used with
Form.json_validate(). When a submission is detected (usually by detecting
a POST request), the method can be run to return the json
encoded validation results as the response. This response is then in turn
parsed by Yota’s JavaScript library which can then execute callback functions
that you can design. To a user of the library, the implementation differeneces
of on-submit and piecewise are minor.

Note

Yota’s JavaScript library is desinged as a jQuery plugin, and as such jQuery is
also required to use these features.

As is classic for jQuery plugins configuration information is passed to Yota’s
library through an options object.

	
options.render_error

	

This attribute should be a function. It is called whenever new information is
recieved about a Node. The status attribute dictates what action should be performed.

	param string status:

		This dictates the type of new information that was
recieved. The first state is “error”, and this means the Node is recieving
an error for the first time. Common actions would be to un-hide an error
div, or something similar. The second state is “update”. This means that an
error is currently registered with a Node, however we’ve recieved another
batch of error for that Node. The errors are not necessarily different than
the current errors. Finally, “no_error” indicates that there is no longer
an error at this Node, and error messages should be removed. This will only
be called if there is currently an error registered at the Node.

	param object ids:

		This is the return information from the
Node.json_identifiers() function for the Node with which the error is
being registered. It was intented to connect the rendering context that
generates the DOM to your JavaScript that will be injecting into the DOM.

	param object data:

		This is the json encoded Node.errors that
should be populated by your validators. More about this can be found in
the Node documentation, or the Validation documentation.

	
options.render_success

	

This attribute should be a function. It is called when the form submission
succeeds, or rather it doesn’t block. More information on blocking can be found
in the Validators section.

	param object data:

		This is information directly generated from your
Form.success_header_generate() function. It is setup to display
some sort of message that applies to the entire form such as an error
working with the database, or proper submission of the data. In
addition, some special key values can be set to trigger the execution
of builtin convenience methods, such as redirection of the browser.
More on this in Success Actions.

	param object ids:

		This is the return information from the
Node.json_identifiers() function for the start Node. It was
intented to connect the rendering context that generates the DOM to your
JavaScript that will be injecting into the DOM.

	
options.piecewise

	

Whether or not this form should be processed in a piecewise fashion. The
default Node teamplte form_open will automatically populate this option when
you put ‘piecewise’ in your global context.

Success Actions

As was touched on in the JavaScript render_success function above, the method
Form.success_header_generate() can be overriden to perform common post
submission actions, or to pass information that you may want to use in your
render_success function. The default render_success method will look for a
‘message’ key in the return value and display this in a Bootstrap success
alert, or do nothing if this key is not present. All actions are performed upon
successful submission, but prior to the render_success method being called.
A simple example is shown below.

class MyForm(yota.Form):
 first = EntryNode(title='First name',
 validator=Check(MinLengthValidator(5)))

 def success_header_generate(self):
 return {'message': 'Thanks for your submission!'}

Or if we wanted to redirect the user after submitting the form:

class MyForm(yota.Form):
 first = EntryNode(title='First name',
 validator=Check(MinLengthValidator(5)))

 def success_header_generate(self):
 return {'redirect': 'http://google.com/'}

Information on the avilible special post-submission actions are below.

Redirection

Include the key ‘redirect’ in your return dictionary and the browser will
be sent to the url specified via method window.location.replace.

Google Analytics Logging

Under the key ‘ga_run’ return a list or tuple of four values, matching the four
values used in Google Analytics API function ga. More information can be
found at the URL below.

https://developers.google.com/analytics/devguides/collection/analyticsjs/events

Clear Form Elements

Pass the key ‘clear_element’ equal to True and upon submission all input fields
in the form will be reset.

Custom Action

Include the key ‘custom_success’ as a string of valid JavaScript and it will be
evaled for you.

On-Submit Validation

A simple on submit validation should be very simple if you’re sticking with the
default Nodes. These Nodes are already setup to pass the required error div ids
and element ids to the client using the default render_error function in Yota’s
JavaScript library, so all you really need to do is set the global context key
‘ajax’ to equal True. This activates the JavaScript library.

Piecewise Validation

On-Submit validation only gives the user feedback when he has submitted the
Form, but what if we want to provide more instant feedback? Piecewise validation
allows us to fire off a server request to validate the form as we’re filling it
out based on any JavaScript based trigger.

The server side of this implementation is almost identical to On-Submit
validation except that you want to pass the key ‘piecewise’ to the
g_context. Again, this simply triggers the JavaScript library to behave
slightly different. All builtin Nodes are designed to work out of the box with
the default AJAX callback functions.

Validation Tiggers

A per-Node attribute ‘piecewise_trigger’ allows you to
set when you would like the Form to be submitted for incremental validation.
This can be any JavaScript event type that your input field supports, and
defaults to “blur”. Common values may be click, change, dblclick, keyup or
keydown.

These event triggers are activated when the Yota jQuery plugin is initially
called. It scans all input fields in your Form and attaches an AJAX submit
action to the input element based on the value of the attribute
“data-piecewise”. In the default Nodes this is set by the attribute
“piecewise_trigger” as can be seen in the code of the entry.html default template.

{% extends base %}
{% block control %}
<input data-piecewise="{{ piecewise_trigger }}"
 type="text"
 id="{{ id }}"
 value="{{ data }}"
 name="{{ name }}"
 placeholder="{{ placeholder }}">
{% endblock %}

 Copyright 2013, Isaac Cook.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	Yota 0.1 documentation

 Python Module Index

 y

 			

 		
 y	

 	
 	
 yota	

 Copyright 2013, Isaac Cook.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	Yota 0.1 documentation

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | Y

_

 	

 	_attr_name (yota.Node attribute)

 	_create_counter (yota.Node attribute)

 	_event_lists (yota.Form attribute)

 	_gen_validate() (yota.Form method)

 	_ignores (yota.Node attribute)

 	_node_list (yota.Form attribute)

 	_null_val (yota.Node attribute)

 	_parse_shorthand_validator() (yota.Form method)

 	

 	_process_errors() (yota.Form method)

 	_processor (yota.Form attribute)

 	_renderer (yota.Form attribute)

 	_requires (yota.Node attribute)

 	_reserved_attr_names (yota.Form attribute)

 	_setup_node() (yota.Form method)

 	_validation_list (yota.Form attribute)

A

 	

 	add_error() (yota.Node method)

 	add_listener() (yota.Form method)

 	

 	auto_start_close (yota.Form attribute)

B

 	

 	BaseNode (class in yota.nodes)

 	

 	ButtonNode (class in yota.nodes)

C

 	

 	Check (class in yota)

 	CheckGroupNode (class in yota.nodes)

 	

 	close_template (yota.Form attribute)

 	context (yota.Form attribute)

D

 	

 	data (yota.Node attribute)

 	data_by_attr() (yota.Form method)

 	

 	data_by_name() (yota.Form method)

E

 	

 	EmailValidator (class in yota.validators)

 	EntryNode (class in yota.nodes)

 	env (yota.renderers.JinjaRenderer attribute)

 	

 	error_header_generate() (yota.Form method)

 	errors (yota.Node attribute)

F

 	

 	FileNode (class in yota.nodes)

 	

 	Form (class in yota)

G

 	

 	g_context (yota.Form attribute)

 	get_by_attr() (yota.Form method)

 	

 	get_context() (yota.Node method)

 	get_list_names() (yota.Node method)

I

 	

 	insert() (yota.Form method)

 	insert_after() (yota.Form method)

 	

 	insert_validator() (yota.Form method)

 	IntegerValidator (class in yota.validators)

J

 	

 	JinjaRenderer (class in yota.renderers)

 	json_identifiers() (yota.Node method)

 	

 	json_validate() (yota.Form method)

L

 	

 	label (yota.Node attribute)

 	LeaderNode (class in yota.nodes)

 	

 	ListNode (class in yota.nodes)

M

 	

 	MatchingValidator (class in yota.validators)

 	MaxLengthValidator (class in yota.validators)

 	

 	MinLengthValidator (class in yota.validators)

 	MinMaxValidator (class in yota.validators)

N

 	

 	name (yota.Form attribute)

 	Node (class in yota)

 	

 	node_visited() (yota.Check method)

 	NonDataNode (class in yota.nodes)

O

 	

 	options.piecewise (global variable or constant)

 	options.render_error (global variable or constant)

 	

 	options.render_success (global variable or constant)

P

 	

 	PasswordNode (class in yota.nodes)

 	PasswordStrengthValidator (class in yota.validators)

 	

 	piecewise_trigger (yota.Node attribute)

R

 	

 	RadioNode (class in yota.nodes)

 	RegexValidator (class in yota.validators)

 	render() (yota.Form method)

 	

 	(yota.renderers.JinjaRenderer method)

 	render_error (yota.Form attribute)

 	

 	render_success (yota.Form attribute)

 	RequiredValidator (class in yota.validators)

 	resolve_data() (yota.Node method)

S

 	

 	search_path (yota.renderers.JinjaRenderer attribute)

 	set_identifiers() (yota.Node method)

 	start_template (yota.Form attribute)

 	

 	SubmitNode (class in yota.nodes)

 	success_header_generate() (yota.Form method)

 	suffix (yota.renderers.JinjaRenderer attribute)

T

 	

 	templ_type (yota.renderers.JinjaRenderer attribute)

 	template (yota.Node attribute)

 	TextareaNode (class in yota.nodes)

 	

 	title (yota.Form attribute)

 	trigger_event() (yota.Form method)

 	type_class_map (yota.Form attribute)

U

 	

 	update_success() (yota.Form method)

 	

 	UsernameValidator (class in yota.validators)

V

 	

 	validate() (yota.Form method)

 	validate_render() (yota.Form method)

 	

 	validator() (yota.Form method)

 	validators (yota.Node attribute)

Y

 	

 	yota (module)

 Copyright 2013, Isaac Cook.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 _static/arch.png
Templates

ar

List of Nodes

Validators

List of Checks

_static/minus.png

_static/comment-bright.png

_modules/yota.html

 Navigation

 		
 index

 		
 modules |

 		Yota 0.1 documentation »

 		Module code »

 Source code for yota

from yota.renderers import JinjaRenderer
from yota.processors import FlaskPostProcessor
from yota.nodes import LeaderNode, Node
from yota.validators import Check, Listener
import json
import copy

class TrackingMeta(type):
 """ This metaclass builds our Form classes. It generates the internal
 _node_list which preserves order of Nodes in your Form as declared. It also
 generates _validation_list for explicitly declared Check attributes in the
 Form """

 def __init__(mcs, name, bases, dct):
 """ Process all of the attributes in the `Form` (or subclass)
 declaration and place them accordingly. This builds the internal
 _node_list and _validation_list and is responsible for preserving
 initial Node order. """

 nodes = {}
 mcs._validation_list = []
 mcs._node_list = []
 mcs._event_lists = {}
 for name, attribute in dct.items():
 # These aren't ordered Nodes, ignore them
 if name is 'start' or name is 'close':
 try:
 attribute._attr_name = name
 except AttributeError:
 raise AttributeError("start/close attribute is special and"
 "should specify a Node to begin your form. Got type {0}"
 "instead".format(type(name)))
 continue
 if isinstance(attribute, Node):
 attribute._attr_name = name
 nodes[attribute._create_counter] = attribute
 delattr(mcs, name)
 elif isinstance(attribute, Check):
 # if we've found a validation check
 attribute._attr_name = name
 mcs._validation_list.append(attribute)
 delattr(mcs, name)
 elif isinstance(attribute, Listener):
 # if we've found a validation check
 attribute._attr_name = name
 if attribute.type not in mcs._event_lists:
 mcs._event_lists[attribute.type] = []
 mcs._event_lists[attribute.type].append(attribute)
 delattr(mcs, name)
 else:
 # just assume that this is some kind of blueprint with
 # ducktyping
 try:
 for node in attribute._node_list:
 nodes[node._create_counter] = node
 except AttributeError:
 pass

 # merge in our events
 try:
 for key, lst in attribute._event_lists.items():
 if key in mcs._event_lists:
 mcs._event_lists[key].extend(lst)
 else:
 mcs._event_lists[key] = lst
 except AttributeError:
 pass

 # and validation
 try:
 mcs._validation_list.extend(attribute._validation_list)
 except AttributeError:
 pass

 # insert our nodes in sorted order by there initialization order, thus
 # preserving order
 for i, attribute in sorted(nodes.items()):
 mcs._node_list.append(attribute)

_Form = TrackingMeta('_Form', (object,), {})
[docs]class Form(_Form):
 """ This is the base class that all user defined forms should inherit from,
 and as such it is the main way to access functionality in Yota. It
 provides the core functionality involved with setting up and
 rendering the form.

 :param context: This is a context specifically for the special form open
 and form close nodes, canonically called start and close.

 :param g_context: This is a global context that will be passed to all nodes
 in rendering thorugh their rendering context as 'g' variable.

 :param start_template: The template used when automatically
 injecting a start Node. See :attr:`yota.Form.auto_start_close` for
 more information.

 :param close_template: The template used when automatically
 injecting a close Node. See :attr:`yota.Form.auto_start_close` for
 more information.

 :param auto_start_close: Dictates whether or not start and close
 Nodes will be automatically appended/prepended to your form. Note
 that this must be set via __init__ or your class definition since it
 must be set before __init__ for the Form is run.

 :param hidden: A dictionary of hidden key/value pairs to be injected
 into the form. This is frequently used to pass dynamic form
 parameters into the validator.

 """

 __metaclass__ = TrackingMeta
 _renderer = JinjaRenderer
 """ This is a class object that is used to perform the actual rendering
 steps, allowing different rendering engines to be swapped out. More about
 this in the section :class:`Renderer` """
 _processor = FlaskPostProcessor
 """ This is a class that performs post processing on whatever is passed in
 as data during validation. The intended purpose of this was to write
 processors that translated submitted form data from the format of the web
 framework being used to a format that Yota expects. It also allows things
 like filtering stripping characters or encoding all data that enters a
 validator. """
 _reserved_attr_names = ('context', 'hidden', 'g_context', 'start_template',
 'close_template', 'auto_start_close', '_renderer',
 '_processor', 'name')
 name = None
 context = {}
 g_context = {}
 title = None
 auto_start_close = True
 start_template = 'form_open'
 close_template = 'form_close'
 render_success = False
 render_error = False
 type_class_map = {'error': 'alert alert-error',
 'info': 'alert alert-info',
 'success': 'alert alert-success',
 'warn': 'alert alert-warn'}
 """ A mapping of error types to their respective class values. Used to
 render messages to the user from validation. Changing it to render messages
 differently could be performed as follows:

 .. code-block:: python

 class MyForm(yota.Form):
 first = EntryNode(title='First name', validators=Check(MinLengthValidator(5)))
 last = EntryNode(title='Last name', validators=MinLengthValidator(5)

 # Override the default type_class_map with our own
 type_class_map = {'error': 'alert alert-error my-special-class', # Add an additional class
 'info': 'alert alert-info',
 'success': 'alert alert-success',
 'warn': 'alert alert-warn'}
 """

 def __init__(self, **kwargs):
 # A bit of a hack to copy all our class attributes
 for class_attr in dir(self):
 if class_attr in kwargs:
 continue
 att = getattr(self, class_attr)
 # We want to copy all the nodes as well as the list, this is a
 # succinct way to do it
 if class_attr in ['_node_list', '_validation_list', '_event_lists']:
 setattr(self, class_attr, copy.deepcopy(att))
 # Private attributes are internal stuff..
 elif not class_attr.startswith('__'):
 # don't try to copy functions, it doesn't go well
 if not callable(att):
 setattr(self, class_attr, copy.copy(att))
 self.context[class_attr] = att

 # Set a default name for our Form
 if self.name is None:
 self.name = self.__class__.__name__

 # pass some attributes to start/close nodes
 self.context['name'] = self.name
 self.context['title'] = self.title

 # run our safety checks, set identifiers, and set local attributes
 for node in self._node_list:
 self._setup_node(node)

 # passes everything to our rendering context and updates params.
 self.context.update(kwargs)
 self.__dict__.update(kwargs)

 # Add our open and close form defaults
 if hasattr(self, 'start'):
 self._node_list.insert(0, self.start)
 else:
 if self.auto_start_close:
 self.insert(0, LeaderNode(template=self.start_template,
 _attr_name='start',
 **self.context))
 if hasattr(self, 'close'):
 self._node_list.append(self.close)
 else:
 if self.auto_start_close:
 self.insert(-1, LeaderNode(template=self.close_template,
 _attr_name='close',
 **self.context))

 # Add some useful global variables for templates
 default_globals = {'form_id': self.name}
 # Let our globals be overridden
 default_globals.update(self.g_context)
 self.g_context = default_globals

 # Initialize some general state variable
 self._last_valid = None
 self._last_raw_json = None

[docs] def render(self):
 """ Runs the renderer to parse templates of nodes and generate the form
 HTML.

 :returns: A string containing the generated output.
 """
 # process the errors before we render
 self._process_errors()

 return self._renderer().render(self._node_list, self.g_context)

[docs] def add_listener(self, listener, type):
 """ Attaches a :class:`Listener` to an event type. These Listener will
 be executed when trigger event is called. """
 if type not in self._event_lists:
 self._event_lists[type] = []
 self._event_lists[type].append(listener)

[docs] def trigger_event(self, type):
 """ Runs all the associated :class:`Listener`'s for a specific event
 type. """
 try:
 for event in self._event_lists[type]:
 event.resolve_attr_names(self)
 event()
 except KeyError:
 pass

[docs] def _setup_node(self, node):
 """ An internal function performs some safety checks, sets attribute,
 and set_identifiers """
 try:
 if type(node._attr_name) is not str:
 raise AttributeError
 except AttributeError as e:
 raise AttributeError('Dynamically inserted nodes must have a _attr_name'
 ' attribute as a string. Please add it. ')

 if hasattr(self, node._attr_name):
 raise AttributeError('Attribute name {0} overlaps with a Form '
 'attribute. Please rename.'
 .format(node._attr_name))

 node.set_identifiers(self.name)
 setattr(self, node._attr_name, node)

[docs] def _parse_shorthand_validator(self, node):
 """ Loops thorugh all the Nodes and checks for shorthand validators.
 After inserting their checks into the form obj they are removed from
 the node. This is because a validation may be called multiple times on
 a single form instance. """
 if hasattr(node, 'validators') and node.validators:
 # Convert a single callable to an iterator for convenience
 if callable(node.validators):
 node.validators = (node.validators,)

 for validator in node.validators:
 # If they provided a check add it, otherwise make the check
 # for them
 if isinstance(validator, Check):
 # Just for extra flexibility, add the attr if they left it out
 if not validator.args and not validator.kwargs:
 validator.args.append(node._attr_name)
 self._validation_list.append(validator)
 else:
 # Assume only a single attr if not specified
 new_valid = Check(validator, node._attr_name)
 self._validation_list.append(new_valid)

 # remove the attribute so multiple calls doesn't break things
 delattr(node, 'validators')

[docs] def _process_errors(self):
 for node in self._node_list:
 # process the node errors and inject special values
 for error in node.errors:
 # Try and retrieve the class values for the result type
 # and send along the required render value
 try:
 error['_type_class'] = self.type_class_map[error['type']]
 except KeyError:
 error['_type_class'] = self.type_class_map['error']

[docs] def insert_validator(self, new_validators):
 """ Inserts a validator to the validator list.

 :param validator: The :class:`Check` to be inserted.
 :type validator: Check """

 for validator in new_validators:
 # check to allow passing in just a check
 if not isinstance(validator, Check):
 raise TypeError('Can only insert type Check or derived classes')

 # append the validator to the list
 self._validation_list.append(validator)

[docs] def insert(self, position, new_node_list):
 """ Inserts a :class:`Node` object or a list of objects at the
 specified position into the :attr:`Form._node_list` of the form.
 Index -1 is an alias for the end of the list. After insertion
 the :meth:`Node.set_identifiers` will be called to generate
 identification for the :class:`Node`. For this to function,
 :attr:`Form._attr_name` must be specified for the node prior to
 insertion. """

 # check to allow passing in just a node
 if isinstance(new_node_list, Node):
 new_node_list = (new_node_list,)

 for i, new_node in enumerate(new_node_list):

 self._setup_node(new_node)

 if position == -1:
 self._node_list.append(new_node)
 else:
 self._node_list.insert(position + i, new_node)

[docs] def insert_after(self, prev_attr_name, new_node_list):
 """ Runs through the internal node structure attempting to find
 a :class:`Node` object whos :attr:`Node._attr_name` is
 prev_attr_name and inserts the passed node after it. If
 `prev_attr_name` cannot be matched it will be inserted at the
 end. Internally calls :meth:`Form.insert` and has the same
 requirements of the :class:`Node`.

 :param prev_attr_name: The attribute name of the `Node` that you
 would like to insert after.
 :type prev_attr_name: string
 :param new_node_list: The :class:`Node` or list of Nodes to be
 inserted.
 :type new_node_list: Node or list of Nodes """

 # check to allow passing in just a node
 if isinstance(new_node_list, Node):
 new_node_list = (new_node_list,)

 # Loop through our list of nodes to find where to insert
 for index, node in enumerate(self._node_list):
 # found!
 if node._attr_name == prev_attr_name:
 for i, new_node in enumerate(new_node_list):
 self._node_list.insert(index + i + 1, new_node)
 setattr(self, new_node._attr_name, new_node)
 new_node.set_identifiers(self.name)
 break
 else:
 # failover append if not found
 for new_node in new_node_list:
 self._node_list.append(new_node)

[docs] def get_by_attr(self, name):
 """ Safe accessor for looking up a node by :attr:`Node._attr_name` """
 try:
 attr = getattr(self, name)
 except AttributeError:
 pass
 else:
 if isinstance(attr, Node):
 return attr
 raise AttributeError('Form attribute {0} couldn\'t be resolved to'
 ' a Node'.format(name))

[docs] def success_header_generate(self):
 """ Please see the documentation for :meth:`Form.error_header_generate`
 as it covers this function as well as itself. """
 pass

[docs] def error_header_generate(self, errors, block):
 """ This function, along with success_header_generate allow you to give
 form wide information back to the user for both AJAJ validated forms
 and conventionally validated forms, although the mechanisms are
 slightly different. Both functions are run at the end of a successful
 or failed validation call in order to give more information for
 rendering.

 For passing information to AJAJ rendering, simply return a dictionary,
 or any Python object that can be serialized to JSON. This information
 gets passed back to the JavaScript callbacks of yota_activate, however
 each in slightly different ways. success_header_generate's information
 will get passed to the render_success callback, while
 error_header_generate will get sent as an error to the render_error
 callback under the context start.

 For passing information into a regular, non AJAJ context simply access
 the attribute manually similar to below.

 .. code-block:: python

 self.start.add_error(
 {'message': 'Please resolve the errors below to continue.'})

 This will provide a simple error message to your start Node. In
 practice these functions could also be used to trigger events and other
 interesting things, although that was not their intended function.

 :param errors: This will be a list of all other Nodes that have errors.
 :param block: Whether or not the form submission will be blocked.
 :type block: boolean

 .. note: By default this function does nothing.
 """
 pass

[docs] def data_by_attr(self):
 """ Returns a dictionary of currently stored :attr:`Node.data`
 attributes keyed by :attr:`Node._attr_name`. Used for returning data
 after its been processed by validators. """

 ret = {}
 for node in self._node_list:
 ret[node._attr_name] = node.data
 return ret

[docs] def data_by_name(self):
 """ Returns a dictionary of currently stored :attr:`Node.data`
 attributes keyed by :attr:`Node.name`. Used for returning data
 after its been processed by validators. """

 ret = {}
 for node in self._node_list:
 ret[node.name] = node.data
 return ret

[docs] def _gen_validate(self, data, piecewise=False):
 """ This is an internal utility function that does the grunt work of
 running validation logic for a :class:`Form`. It is called by the other
 primary validation methods. """

 # Allows user to set a modular processor on incoming data
 data = self._processor().filter_post(data)

 # reset all error lists and data
 for node in self._node_list:
 node.errors = []
 node.data = ''
 node.resolve_data(data)
 # Pull out all our shorthand validators
 self._parse_shorthand_validator(node)

 # try to load our visited list of it's piecewise validation
 if '_visited_names' not in data and piecewise:
 raise AttributeError("No _visited_names present in data submission"
 ". Data is required for piecewise validation")
 elif piecewise:
 visited = json.loads(data['_visited_names'])

 # assume to be not blocking
 block = False
 # loop over our checks and run our validators
 for check in self._validation_list:
 check.resolve_attr_names(self)
 if piecewise is False or check.node_visited(visited):
 check()
 else:
 # If even a single check can't be run, we need to block
 block = True

 # Run the one off validation method
 self.validator()

 # a list to hold Nodes that actually have errors
 error_node_list = []
 for node in self._node_list:
 # slightly confusing way of setting our block = True by
 # default
 if node.errors:

 error_node_list.append(node)

 for error in node.errors:
 block |= error.get('block', True)

 return block, error_node_list

[docs] def json_validate(self, data, piecewise=False, raw=False):
 """ The same as :meth:`Form.validate_render` except the errors
 are loaded into a JSON string to be passed back as a query
 result. This output is designed to be used by the Yota
 Javascript library.

 :param piecewise: If set to True, the validator will silently
 ignore validator for which it has insufficient information. This
 is designed to be used for the AJAJ piecewise validation
 function, although it does not have to be.
 :type piecewise: boolean

 :param raw: If set to True then the second return parameter will be a
 Python dictionary instead of a JSON string
 :type raw: boolean

 :return: A boolean whether or not the form submission is valid and the
 json string (or raw dictionary) to pass back to the javascript side.
 The boolean is an anding of submission (whether the submit button was
 actually pressed) and the block parameter (whether or not any blocking
 validators passed)
 """

 # Allows user to set a modular processor on incoming data
 data = self._processor().filter_post(data)

 errors = {}
 """ We want to automatically block the form from actually submitting
 if this is piecewise validation. In addition if they are actually
 submitting then we want to run it as non-piecewise validation """
 if data.get('submit_action', 'false') != 'true' and piecewise:
 block, invalid = self._gen_validate(data, piecewise=piecewise)
 block = True
 else:
 block, invalid = self._gen_validate(data, piecewise=False)

 # loop over our nodes and insert information for the JS callbacks
 for node in invalid:
 errors[node._attr_name] = {'identifiers': node.json_identifiers(),
 'errors': node.errors}

 # if needed we should run our all form message generator and return
 # json encoded error message
 retval = {'block': block}
 if len(errors) > 0:
 header_err = self.error_header_generate(errors, block)
 if header_err:
 errors['start'] = {'identifiers': self.start.json_identifiers(),
 'errors': header_err}

 if not block:
 blob = self.success_header_generate()
 if blob:
 retval['success_blob'] = blob
 if hasattr(self, 'start'):
 retval['success_ids'] = self.start.json_identifiers()

 retval['errors'] = errors

 # Throw back a variable in the json if there is both a submit
 # and no blocking errors. The main purpose here is the allow
 # easy catching of success in the view code.
 if data.get('submit_action', 'false') == 'true' and not block:
 valid = True
 self.trigger_event("validate_success")
 else:
 self.trigger_event("validate_failure")
 valid = False

 # Hold our return dictionary in memeory for easy editing later
 self._last_raw_json = retval

 # process the errors before we serialize
 self._process_errors()

 # Return our raw dictionary if requested, otherwise serialize for
 # convenience...
 if raw:
 return valid, retval
 else:
 return valid, json.dumps(retval)

[docs] def validate(self, data):
 """ Runs all the validators associated with the :class:`Form`.

 :return: Whether the validators are blocking submission and a list of
 nodes that have validation messages.
 """

 # Allows user to set a modular processor on incoming data
 data = self._processor().filter_post(data)
 block, invalid = self._gen_validate(data)

 # Run our validation trigger events
 if block:
 self.trigger_event("validate_failure")
 else:
 self.trigger_event("validate_success")

 return (not block), invalid

[docs] def validate_render(self, data):
 """ Runs all the validators on the `data` that is passed in and returns
 a re-render of the :class:`Form` if there are validation errors,
 otherwise it returns True representing a successful submission. Since
 validators are designed to pass error information in through the
 :attr:`Node.errors` attribute then this error information is in turn
 availible through the rendering context.

 :param data: The data to be passed through the
 `Form._processor`. If the data is in the form of a dictionary
 where the key is the 'name' of the form field and the data is a
 string then no post-processing is neccessary.
 :type data: dictionary

 :return: Whether the validators are blocking submission and a re-render
 of the form with the validation data passed in.
 """

 # Allows user to set a modular processor on incoming data
 data = self._processor().filter_post(data)

 block, invalid = self._gen_validate(data)

 self.g_context['block'] = block

 # update our state var for later update_success calls
 self._last_valid = 'render'

 # run our form validators at the end
 if not block:
 self.trigger_event("validate_success")
 self.success_header_generate()
 else:
 self.trigger_event("validate_failure")
 self.error_header_generate(invalid, block)

 return (not block), self.render()

[docs] def validator(self):
 """ This is provided as a convenience method for Validation logic that
 is one-off, and only intended for a single form. Simply override this
 function and access any of your Nodes and their data via the self. This
 method will be called after all other Validators are run. """
 pass

[docs] def update_success(self, update_dict, raw=False):
 """ This method serves as an easy way to update your success attributes
 that are passed to the start Node rendering context, or passed back in
 JSON. It automatically recalls whether the last validation call was to
 json_validate or validate_render and modifys the correct dictionary
 accordingly.

 :param update_dict: The dictionary of values to update/add.
 :type data: dictionary

 :param raw: Whether you would like a pre-compiled JSON
 string returned, or the raw dictionary.
 :type raw: bool

 :return: Return value is either the new JSON string (or raw dict if
 requested) if json_validate was your last validation call, or a
 re-render of the form with updated error messages if validate_render
 was your last call.
 """

 if self._last_valid == 'render':
 try:
 self.start.errors[-1].update(update_dict)
 except IndexError:
 raise IndexError("Error updating your error dictionary for the "
 "start Node. There were no errors to modify.")
 except AttributeError:
 raise AttributeError("This method is designed to update an "
 "error dictionary, yet your errors are "
 "not dictionaries")

 return self.render()

 # We're going to default to json render
 else:
 # Modify our last json dict
 try:
 self._last_raw_json['success_blob'].update(update_dict)
 except KeyError:
 raise KeyError("Either your json_validate method has not been "
 "run yet, or your success_header_generate does"
 " not produce output")

 # Continue the raw semantic...
 if raw:
 return self._last_raw_json
 else:
 return json.dumps(self._last_raw_json)

 © Copyright 2013, Isaac Cook.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

search.html

 Navigation

 		
 index

 		
 modules |

 		Yota 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Isaac Cook.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_modules/yota/validators.html

 Navigation

 		
 index

 		
 modules |

 		Yota 0.1 documentation »

 		Module code »

 		yota »

 Source code for yota.validators

import re
from yota.exceptions import NotCallableException

[docs]class MinLengthValidator(object):
 """ Checks to see if data is at least length long.

 :param length: The minimum length of the data.
 :type length: integer

 :param message: The message to present to the user upon failure.
 :type message: string
 """
 __slots__ = ["message", "min_length"]

 def __init__(self, length, message=None):
 self.min_length = length
 self.message = message if message else "Minimum allowed length {0}" \
 .format(length)
 super(MinLengthValidator, self).__init__()

 def __call__(self, target):
 if len(target.data) < self.min_length:
 target.add_error({'message': self.message})

[docs]class MaxLengthValidator(object):
 """ Checks to see if data is at most length long.

 :param length: The maximum length of the data.
 :type length: integer

 :param message: The message to present to the user upon failure.
 :type message: string
 """
 __slots__ = ["message", "max_length"]

 def __init__(self, length, message=None):
 self.max_length = length
 self.message = message if message else "Maximum allowed length {0}" \
 .format(length)
 super(MaxLengthValidator, self).__init__()

 def __call__(self, target):
 if len(target.data) > self.max_length:
 target.add_error({'message': self.message})

class NonBlockingDummyValidator(object):
 """ A dummy class for testing non-blocking validators
 """

 def __call__(self, target):
 target.add_error({'message': "I'm not blocking!", 'block': False})

[docs]class MatchingValidator(object):
 """ Checks if two nodes values match eachother. The error is delivered to
 the first node.

 :param message: (optional) The message to present to the user upon failure.
 :type message: string
 """
 __slots__ = ["message"]

 def __init__(self, message=None):
 self.message = message if message else "Fields must match"
 super(MatchingValidator, self).__init__()

 def __call__(self, target1, target2):
 if target1.data != target2.data:
 target1.add_error({'message': self.message})
 target2.add_error({'message': self.message})

[docs]class IntegerValidator(object):
 """ Checks if the value is an integer and converts it to one if it is

 :param message: (optional) The message to present to the user upon failure.
 :type message: string
 """
 __slots__ = ["message"]

 def __init__(self, message=None):
 self.message = message if message else "Value must only contain numbers"
 super(IntegerValidator, self).__init__()

 def __call__(self, target):
 try:
 int(target.data)
 except ValueError:
 target.add_error({'message': self.message})

[docs]class MinMaxValidator(object):
 """ Checks if the value is between the min and max values given

 :param message: (optional) The message to present to the user upon failure.
 :type message: string

 :param min: The minimum length of the data.
 :type length: integer

 :param max: The maximum length of the data.
 :type length: integer
 """
 __slots__ = ["minmsg", "maxmsg", "max", "min"]

 def __init__(self,
 min,
 max,
 minmsg=None,
 maxmsg=None):
 self.min = min
 self.max = max
 self.minmsg = minmsg if minmsg else "Must be longer than {0} characters".format(min)
 self.maxmsg = maxmsg if maxmsg else "Must be fewer than {0} characters".format(max)
 super(MinMaxValidator, self).__init__()

 def __call__(self, target):
 if len(target.data) < self.min:
 target.add_error({'message': self.minmsg})
 if len(target.data) > self.max:
 target.add_error({'message': self.maxmsg})

[docs]class RegexValidator(object):
 """ Quick and easy check to see if the input
 matches the given regex.

 :param regex: (optional) The regex to run against the input.
 :type regex: string
 :param message: (optional) The message to present to the user upon failure.
 :type message: string
 """
 __slots__ = ["message", "regex"]

 def __init__(self, regex=None, message=None):
 self.message = message if message else "Input does not match regex"
 self.regex = regex
 super(RegexValidator, self).__init__()

 def __call__(self, target=None):
 if re.match(self.regex, target.data) is None:
 target.add_error({'message': self.message})

class PasswordValidator(RegexValidator):
 """ Quick and easy check to see if a field
 matches a stamdard password regex. This regex
 matches a string at least 7 characters long which
 contains an upper and lowercase letter, a special
 character, a number, and no blanks/returns.

 :param message: (optional) The message to present to the user upon failure.
 :type message: string
 """
 __slots__ = ["message"]

 def __init__(self, message=None):
 self.message = message if message else "Must be 7 characters or longer, contain " \
 "at least one upper and lower case letter, " \
 "a number, a special character, and no spaces"
 self.regex = '^(?=.*[0-9])(?=.*[a-z])(?=.*[A-Z])(?=.*[@#$%^&+=])(?=\S+$).{7,}$'

[docs]class UsernameValidator(RegexValidator):
 """ Quick and easy check to see if a field
 matches a stamdard username regex. This regex
 matches a string from 3-20 characters long and
 composed only of numbers, letters, hyphens, and
 underscores.

 :param message: (optional) The message to present to the user upon failure.
 :type message: string
 """
 __slots__ = ["message"]

 def __init__(self, message=None):
 self.message = message if message else "Must be 3-20 characters and only " \
 "contain letters, numbers, hyphens and underscores"
 self.regex = '^[a-zA-Z0-9-_]{3,20}$'

[docs]class PasswordStrengthValidator(object):
 """ A validator to check the password strength.

 :param regex: (optional) The regex to run against the input.
 :type regex: list
 :param message: (optional) The message to present to the user upon failure.
 :type message: string

 """
 __slots__ = ["message", "regex"]

 def __init__(self, regex=None, message=None):
 self.message = message
 if not isinstance(regex, list):
 self.regex = [
 "(?=.*[A-Z].*[A-Z])", # Matches 2 uppercase letters
 "(?=.*[!@#$&*])", # Matches 1 Special character
 "(?=.*[0-9].*[0-9])", # Matches 2 numbers
 ".{7}" # Has at least 7 characters
]
 else:
 self.regex = regex
 super(StrongPasswordValidator, self).__init__()

 def __call__(self, target=None):
 strength = 0

 # Loop through the regex and increment
 # strength for each successful match
 for regex in self.regex:
 if re.match(regex, target.data):
 strength += 1
 target.add_error({'message': "Password strength is " + str(strength),
 'block': False})

class PyCaptchaValidator(object):
 """ Expects to receive the pycaptcha test solutions.
 This provides the core functionality for checking to see if the captcha the
 user entered matches the one generated by the captcha factory

 :param match: (required) The name of the field to match against
 :type match: string
 :param message: (optional) The message to present to the user upon failure.
 :type message: string
 """
 __slots__ = ["pycaptcha_solutions", "message"]

 def __init__(self, pycaptcha_solutions=None, message=None):
 self.message = message if message else "Captcha did not match!"
 self.pycaptcha_solutions = pycaptcha_solutions
 super(PyCaptchaValidator, self).__init__()

 def __call__(self, target=None):
 if 'captcha_attempt' in target.data:
 for solution in self.pycaptcha_solutions:
 if target.data['captcha_attempt'] == solution:
 solved = True
 if not 'solved' in locals():
 target.add_error({'message': self.message})

[docs]class RequiredValidator(object):
 """ Checks to make sure the user entered something.

 :param message: (optional) The message to present to the user upon failure.
 :type message: string
 """
 __slots__ = ["message"]

 def __init__(self, message=None):
 self.message = message if message else "A value is required"
 super(RequiredValidator, self).__init__()

 def __call__(self, target=None):
 if len(target.data) == 0:
 target.add_error({'message': self.message})

class MimeTypeValidator(object):
 """ Checks to make sure a posted file is an allowed mime type

 :param message: (optional) The message to present to the user upon failure.
 :type message: string
 :param mimetypes: MIME types to check the post against ala 'image/jpeg'
 :type mimetypes: list
 """
 __slots__ = ["message", "mimetypes"]

 def __init__(self, mimetypes, message=None):
 self.mimetypes = mimetypes
 self.message = message if message else "Sorry, that MIME type is not supported"
 super(MimeTypeValidator, self).__init__()

 def __call__(self, target=None):
 if not target.data.type in self.mimetypes:
 target.add_error({'message': self.message})

[docs]class EmailValidator(object):
 """ A direct port of the Django Email validator. Checks to see if an
 email is valid using regular expressions.
 """

 user_regex = re.compile(
 r"(^[-!#$%&'*+/=?^_`{}|~0-9A-Z]+(\.[-!#$%&'*+/=?^_`{}|~0-9A-Z]+)*$" # dot-atom
 r'|^"([\001-\010\013\014\016-\037!#-\[\]-\177]|\\[\001-\011\013\014\016-\177])*"$)',
 # quoted-string
 re.IGNORECASE)
 domain_regex = re.compile(
 r'(?:[A-Z0-9](?:[A-Z0-9-]{0,61}[A-Z0-9])?\.)+(?:[A-Z]{2,6}\.?|[A-Z0-9-]{2,}\.?$)' # domain
 # literal form, ipv4 address (SMTP 4.1.3)
 r'|^\[(25[0-5]|2[0-4]\d|[0-1]?\d?\d)(\.(25[0-5]|2[0-4]\d|[0-1]?\d?\d)){3}\]$',
 re.IGNORECASE)
 domain_whitelist = ['localhost']

 def __init__(self, message=None):
 self.message = message if message else "Entered value must be a valid"\
 " email address"
 super(EmailValidator, self).__init__()

 def valid(self, value):
 """ A small breakout function to make passing back errors less
 redundant.
 """
 if not value or '@' not in value:
 return False

 user_part, domain_part = value.rsplit('@', 1)
 if not self.user_regex.match(user_part):
 return False

 if (not domain_part in self.domain_whitelist and
 not self.domain_regex.match(domain_part)):
 # Try for possible IDN domain-part
 try:
 domain_part = domain_part.encode('idna').decode('ascii')
 if not self.domain_regex.match(domain_part):
 return False
 else:
 return True
 except UnicodeError:
 return False

 return True

 def __call__(self, target):
 if self.valid(target.data):
 return None
 else:
 target.add_error({'message': self.message})

class ActionWrapper(object):
 """ A base class for Check and Listener. Both are very similar in operation
 since they are both wrappers around called functions. Their primary
 function is to resolve arguments lazily, allowing validators to be added
 for fields that don't exist. """

 def __init__(self, callable, *args, **kwargs):
 self.callable = callable
 if not args:
 self.args = []
 else:
 self.args = list(args)

 if not kwargs:
 self.kwargs = {}
 else:
 self.kwargs = kwargs

 self._attr_name = None
 self.resolved = False

 def resolve_attr_names(self, form):
 """ Called internally by the validation methods this resolves all arg
 and kwarg strings to their respective `Node` objects and replaces them
 with a KeyedTuple containing the submitted data and the Node object
 reference.
 :param form: A reference to the Form class that the check is being
 resolved to.
 :param data: The full form data dictionary submitted for validation.
 """
 if self.resolved:
 return

 # Process args
 for key, arg in enumerate(self.args):
 self.args[key] = form.get_by_attr(arg)

 # Process kwargs
 for key, val in self.kwargs.items():
 self.kwargs[key] = form.get_by_attr(val)

 self.resolved = True

 def __call__(self):
 """ Called by the validation routines. Allows the Check to specify
 parameters that will be passed to our Validation method.
 """

 if not self.resolved:
 raise ValueError("Check args are not resolved. This should not happen")

 try:
 # Run our validator
 return self.callable(*self.args, **self.kwargs)
 except TypeError as e:
 raise NotCallableException(
 "Validators provided must be callable, type '{0}'" +
 "instead. Caused by {1}".format(type(self.callable), e))

class Check(ActionWrapper):
 """ This object wraps a validator callable and is intended to be used in
 your `Form` subclass definition.

 :param callable validator: This is required to be a callable object
 that will carry out the actual validation. Many generic validators
 exist, or you can roll your own.

 :param list args: A list of strings, or a single string,
 representing that _attr_name of the `Node` you would like passed
 into the validator. Once a validator is called this string will get
 resolved into the Node object

 :param dict kwargs: Same as args above except it allows passing in node
 information as keyword arguments to the validator callable.

 `Check` objects are designed to be declared in your form subclass.
 """

 def node_visited(self, visited):
 """ Used by piecewise validation to determine if all the Nodes involved
 in the validator have been "visited" and thus are ready for the
 validator to be run """

 if not self.resolved:
 raise ValueError("Check args are not resolved. This should not happen")

 """ Loop through the args. for each node, check if it's represented in
 the visited node list. if it is then then we're good to go"""
 for node in self.args:
 for name in node.get_list_names():
 if name in visited:
 break
 else: # if we didn't break, not enough info
 return False

 # Process kwargs
 for node in self.kwargs.values():
 for name in node.get_list_names():
 if name in visited:
 break
 else: # if we didn't break
 return False

 # we identified at least one name in each node's collection of names
 return True

 def __iter__(self):
 """ A simple way to make functions accept lists or single elements """
 yield self

 def __repr__(self):
 return "<Check at {0}, args: {1}, kwargs: {2}>".format(id(self), self.args, self.kwargs)

class Listener(ActionWrapper):
 """ The class that wraps actions triggered by events. Essentially this just
 holds reference to a callable along with some metadata and a lazy loader
 for Nodes. The Form._event_lists will contain a collection of these objects
 and are what drives the Form.trigger_event function.

 :param string type: The name of the event to listen to. The callable will be
 executed when the event is triggered.

 :param callable validator: This is required to be a callable object
 that will will be executed when the event of `type` is triggered.

 :param string *args: A list of strings, or a single string,
 representing that _attr_name of the `Node` you would like passed
 into the validator. Once a validator is called this string will get
 resolved into the Node object.

 :param dict **kwargs: Same as args above except it allows passing in node
 information as keyword arguments to the validator callable.

 `Listener` objects are designed to be declared in your form subclass.
 """
 def __init__(self, type, callable, *args, **kwargs):
 # Just add the type attribute that the base doesn't have
 self.type = type
 super(Listener, self).__init__(callable, *args, **kwargs)

 © Copyright 2013, Isaac Cook.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Yota 0.1 documentation »

 All modules for which code is available

		yota

		yota.nodes

		yota.renderers

		yota.validators

 © Copyright 2013, Isaac Cook.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_modules/yota/nodes.html

 Navigation

 		
 index

 		
 modules |

 		Yota 0.1 documentation »

 		Module code »

 		yota »

 Source code for yota.nodes

from yota.exceptions import InvalidContextException
import copy

class Node(object):
 """ Nodes are holders of context for rendering and displaying validating
 for a portion of your :class:`Form`. This default base Node is designed to
 provide a template along with specific context information to a templating
 engine such as Jinja2. For validation a Node acts as an information source
 or an error sink. Essentially Nodes can be used to source data for use in a
 :class:`Check`, and they can then be delivered some sort of validation
 error via a the internal :attr:`errors` attribute.

 .. note:: By default all keyword attributes passed to a Node's init
 function are passed onto the rendering context. To override this,
 use the
 :attr:`Node._ignores` attribute.

 :param _attr_name: This is how the Node is identified in the Form. If
 populated automatically if the Node is defined in an a Form class
 definition, however if the Node is added dynamically it will need to be
 defined before adding it to the Form.
 :type _attr_name: string

 :param _ignores: A List of attribute names to explicity not include in the
 rendering context. Mostly a niceity for keeping the rendering context
 clutter free.
 :type _ignores: list

 :param _requires: A List of attributes that will be required at
 render time. An exception will be thrown if these attributes are not
 present. Useful for things like lists that require certain data to
 render properly.
 :type _requires: list

 :param template: String name of the template to be parsed upon
 rendering. This is passed into the `Form._renderer` so it needs to
 be whatever that is designed to accept. Jinja2 is looking for a
 filename like 'node' that occurs in it's search path.
 :type template: string

 :param validators: An optional attribute that specifies a :class:`Check`
 object, or list of Check objects to be associated with the Node. This is
 automatically at render time.
 :type validator: callable

 :param _null_val: When form submission data is passed in for validation and
 the :meth:`Node.resolve_data` method cannot identify anything, the data
 attribute will be set to this value. Defaults to "".

 The default Node init method accepts any keyword arguments and adds them to
 the Node's rendering context. In addition any class attributes may be added
 to custom Nodes and these attributes will be copied at instantiation time
 and passed into the rendering context.
 """

 _create_counter = 0
 """ Allows tracking the order of Node creation """
 _ignores = ['template', 'validator']
 _requires = []
 _attr_name = None
 _null_val = ""

 piecewise_trigger = 'blur'
 template = None
 validators = []
 label = True
 errors = []
 data = ''

 def __init__(self, **kwargs):
 # A bit of a hack to copy all our class attributes
 for class_attr in dir(self):
 if class_attr in kwargs:
 continue
 # We want to copy all the nodes as well as the list, this is a
 # succinct way to do it
 # Private attributes are internal stuff..
 if not class_attr.startswith('__'):
 # don't try to copy functions, it doesn't go well
 att = getattr(self, class_attr)
 if not callable(att):
 setattr(self, class_attr, copy.copy(att))
 self.__dict__.update(kwargs)

 # Allows the parent form to keep track of attribute order
 self._create_counter = Node._create_counter
 Node._create_counter += 1

 def add_error(self, error):
 """ This method serves mostly as a wrapper alowing for different error
 ordering semantics, or possibly error post-processing. Errors from
 validation methods should be added in this way allowing them to be
 caught. More information about what gets passed in in the
 :doc:`Validators` section. """
 self.errors.append(error)

 def json_identifiers(self):
 """ Allows passing arbitrary identification information to your JSON
 error rendering callback. For instance, a common use case is the display
 an error message in a pre-defined div with a specific id. Well you may
 perhaps pass in an 'error_div_id' attribute to the JSON callback to use
 when trying to render this error. The default for Yota builtin nodes is
 to pass 'error_id' indicating the id of the error container in addition
 to a list containing all input elements in the Node's ids. """
 return {'error_id': self.id + '_error', 'elements': [self.id,]}

 def set_identifiers(self, parent_name):
 """ This function gets called by the parent `Form` when it is
 initialized or inserted. It is designed to set various unique
 identifiers. By default it generates an id for the Node that is
 {parent_name}_{_attr_id}, a title for the Node that is the _attr_name
 capitalized, and a name for the element that is just the _attr_name.
 All of these attributes are then passed onto the rendering context of
 the Node by default. By default all of these attributes will yield to
 attributes passed into the __init__ method.

 :param parent_name: The name of the parent form. Useful in ensuring
 unique identifiers on your element names.
 :type parent_name: string
 """

 # Set some good defaults based on attribute name and parent name,
 # but always allow the user to override the values at the init level
 if not hasattr(self, 'id'):
 self.id = "{0}_{1}".format(parent_name, self._attr_name)
 if not hasattr(self, 'name'):
 self.name = self._attr_name
 if not hasattr(self, 'title'):
 self.title = self._attr_name.capitalize().replace('_', ' ')

 def resolve_data(self, data):
 """ This method links data from form submission back to Nodes. HTML
 form data is represented by a dictionary that is keyed by the 'name'
 attribute of the form element. Since most Nodes only render a single
 form element, and the default set_identifiers generates a single 'name'
 attribute for the Node then this function attempts to find data by
 linking the two together. However, if you were to change that semantic
 this would need to change. Look at the CheckGroupNode for a reference
 impplementation of this behaviour, or the Docs under "Custom Nodes".
 This method should operate by setting its own data attribute, as this
 is how Validators conventionally look for data.

 ... note:: This method will throw an exception at validation time if
 the data dictionary contains no key name, so it important to
 override this function to a NoOp if your Node generates no data.
 NonDataNode was created for this exact purpose.

 :param data: The dictionary of data that is passed to your validation
 method call.
 """
 try:
 self.data = data[self.name]
 except KeyError:
 self.data = self._null_val

 def get_context(self, g_context):
 """ Builds our rendering context for the Node at render time. By
 default all attributes of the Node are added to the global namespace
 and the global rendering context is passed in under the variable 'g'.
 This function is designed to be overridden for customization. :param
 g_context: The global rendering context passed in from the rendering
 method.

 :param g_context: This is the global context passed in from the parent
 Form object. By default it's included under the 'g' key, similar to
 Flask's globals.
 """

 # Dat 2.6 compat, no dict comprehensions :(
 d = {}
 for key in dir(self):
 attr = getattr(self, key)
 if not key.startswith("_") and\
 key not in self._ignores and\
 not callable(attr):
 d[key] = attr

 # check to make sure all required attributes are present
 for r in self._requires:
 if r not in d:
 raise InvalidContextException(
 "Missing required context value '{0}'".format(r))
 d['g'] = g_context
 return d

 def get_list_names(self):
 """ As the title suggests this needs to return an iterable of names. These
 should be names corresponding to form elements that the Node will
 generate. This list is uesed by piecewise validation to determine if a
 Node has been visisted based on a list of names that have been visited,
 bridging Nodes to elements. """
 return (self.name,)

 def __iter__(self):
 """ A simple way to make functions accept lists or single elements """
 yield self

 def __repr__(self):
 """ Make debugging and printing nodes a bit more readible """
 return "<{0} at {1}, _attr_name={2}>".format(__name__, id(self), self._attr_name)

class Blueprint(object):
 def __init__(self, source):
 for node in source._node_list:
 # Reassign attribute order to fit in line with the other attributes
 node._create_counter = Node._create_counter
 Node._create_counter += 1
 self._node_list = source._node_list
 self._event_lists = source._event_lists
 self._validation_list = source._validation_list

[docs]class BaseNode(Node):
 """ This base Node supplies the name of the base rendering template that
 is used for standard form elements. This base template provides error divs
 and the horizontal form layout for Bootstrap by default through the
 `horiz.html` base template. """
 base = "horiz.html"
 css_class = ''
 css_style = ''

[docs]class NonDataNode(Node):
 """ A base to inherit from for Nodes that aren't designed to generate
 output, such as the SubmitNode or the LeaderNode. It must override
 resolve_data, otherwise the data will be set to :attr:`Node._null_val`. """
 def resolve_data(self, data):
 pass

[docs]class ListNode(BaseNode):
 """ Node for providing a basic drop down list. Requires an attribute that
 is a list of tuples providing the key and value for the dropdown list
 items.

 .. note:: The first item of the tuple must be a string in order to match
 returned data properly and re-select the same list item when a
 validation error occurs.

 :attr items: Must be a list of tuples where the first element is the value
 of the second is the label.
 """
 template = 'list'
 _requires = ['items']

[docs]class RadioNode(BaseNode):
 """ Node for providing a group of radio buttons. Requires buttons
 attribute.

 :attr buttons: Must be a list of tuples where the first element is the
 value of the second is the label.
 """
 template = 'radio_group'
 _requires = ['buttons']

class CheckNode(BaseNode):
 """ Creates a simple checkbox for your form. """
 template = 'checkbox'

 def resolve_data(self, data):
 if self.name in data:
 self.data = data[self.name]
 else:
 # Unchecked checkboxes don't submit any data so we'll set the
 # value to false if there is no post data
 self.data = False

[docs]class CheckGroupNode(BaseNode):
 """ Node for providing a group of checkboxes. Requires boxes
 attribute. Instead of defining an ID value explicitly the
 :class:`Node.set_identifiers` defines a prefix value to be prefixed to all
 id elements for checkboxes in the group. The output data is a list
 containing the names of the checkboxes that were checked.

 :attr boxes: Must be a list of tuples where the first element is the
 name, the second is the label.
 """
 template = 'checkbox_group'
 _requires = ['boxes']

 def resolve_data(self, data):
 # return a list of checked values since we have multiple names
 ret = []
 for name, desc in self.boxes:
 try:
 if len(data[name]) > 0:
 ret.append(name)
 except KeyError:
 pass

 self.data = ret

 def json_identifiers(self):
 ids = []
 for name, desc in self.boxes:
 ids.append(self.prefix + name)
 return {'error_id': self.id + "_error", 'elements': ids}

 def set_identifiers(self, parent_name):
 # defines a prefix to be used on all the different checkbox ids
 if not hasattr(self, 'prefix'):
 self.prefix = parent_name + "_"
 # defines a generic id to be used for generating things like error ids
 if not hasattr(self, 'id'):
 self.id = parent_name + "_" + self._attr_name
 if not hasattr(self, 'title'):
 self.title = self._attr_name.capitalize().replace('_', ' ')

[docs]class ButtonNode(BaseNode, NonDataNode):
 """ Creates a button in your form that submits
 no data.
 """
 template = 'button'
 button_title = 'Click me!'

[docs]class EntryNode(BaseNode):
 """ Creates an input box for your form. """
 template = 'entry'

[docs]class PasswordNode(BaseNode):
 """ Creates an input box for your form. """
 template = 'password'

[docs]class FileNode(BaseNode):
 """ Creates an input box for your form. """
 template = 'file'
 accepts = 'audio/*,video/*,image/*'

[docs]class TextareaNode(BaseNode):
 """ A node with a basic textarea template with defaults provided.

 :attr rows: The number of rows to make the textarea
 :attr columns: The number of columns to make the textarea
 """
 template = 'textarea'
 rows = '5'
 columns = '10'

[docs]class SubmitNode(NonDataNode, BaseNode):
 """ Displays a submit button on the right side to align with Form elements
 """
 template = 'submit'
 css_class = 'btn btn-primary'

[docs]class LeaderNode(NonDataNode):
 """ A Node that does few special things to setup and close the form.
 Intended for use in the start and end Nodes. """

 form_class = "form-horizontal"
 action = ''

 def set_identifiers(self, parent_name):
 # set our start node's id to actually be the name of the form
 if not hasattr(self, 'id'):
 self.id = parent_name
 if not hasattr(self, 'name'):
 self.name = self._attr_name

 © Copyright 2013, Isaac Cook.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_static/plus.png

_static/down.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

_modules/yota/renderers.html

 Navigation

 		
 index

 		
 modules |

 		Yota 0.1 documentation »

 		Module code »

 		yota »

 Source code for yota.renderers

from jinja2 import Environment, FileSystemLoader
import os

[docs]class JinjaRenderer(object):

 templ_type = 'bs2'
 """
 Allows you to switch the default template set being used. Default templates
 for JinjaRenderer are stored in /templates/jinja/{templ_type}/. Below code
 being run before your render method will change templates to Bootstrap 3.0.
 This is usually run when setting up web framework configs to take effect
 globally. See the flask example for more information.

 .. code-block:: python

 import os
 from yota.renderers import JinjaRenderer

 JinjaRenderer.templ_type = "bs3"

 .. note:: In order to display errors correctly the :attr:`Form.type_class_map`
 must be overriden so alert-error can be changed to alert-danger for
 Bootstrap 3.

 """
 search_path = []
 """
 The list of paths that Jinja will look for templates in. It scans
 sequentially, so inserting custom template paths at the beginning is an
 easy way to override default templates without touching Yota. The default
 path is appended to the end of this list the first time render is called.
 """
 _env = None
 """
 The Jinja rendering enviroment. This is lazily loaded.
 """

 suffix = ".html"
 """ The default template suffix """

 @property
[docs] def env(self):
 """ Simple lazy loader for the Jinja2 enviroment """
 if not self._env:
 path = os.path.dirname(os.path.realpath(__file__)) \
 + "/templates/" + self.templ_type + "/jinja/"
 if path not in self.search_path:
 self.search_path.append(path)
 loader = FileSystemLoader(JinjaRenderer.search_path)
 self._env = Environment(loader=loader)
 return self._env

[docs] def render(self, nodes, g_context):
 """ Loop over each Node passed in by nodes and render it into a big
 blob of a string. Passes g_context to each nodes
 :meth:`Node.get_context`. """
 buildup = ""
 for node in nodes:
 template = self.env.get_template(node.template + self.suffix)
 buildup += template.render(node.get_context(g_context))
 return buildup

 © Copyright 2013, Isaac Cook.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_static/down-pressed.png

